- cosine similarity

General / Subtle Notes From Ang

- If you understand all tutorials and information from slides you will at least get a first class.
- Search: Why are skip pointers not useful for queries of the form x OR y
- Found lots of documents with similar questions to Assignment 2 and other questions relevant to information retrieval!
- Need to know reason term has high weight
- One reason is tf
- The other is idf
- Remember cosine similarity between query and document
- Easy if you understand inner product(dot product)

Rich's List

- The term vocabulary
- Dictionaries and tolerant retrieval
- Index compression - basic idea of why, how lossy vs lossless know
- Postings compression
- Link analysis: Random walks, Markov chains, calculate pagerank (definitely on the exam) issues of this approach."

What to Revise (In Ang's Notes)

Lecture 1

- Need to know pritty much all of it

Lecture 2

- Need to know pritty much all of it

Lecture 3

- Tolerant retrieval
- Know the exercises on wild cards, permuterm etc.
- Jaccard, contexts, soundex on index (rules will be provided)
- Levenshtein

Lecture 4

- Not covered

Lecture 5

- Heaps Law + Zipf's Law (very important)
- Blocking, storing gaps
- Know bytecodes, (static variables)?, gamma
- Entropy / entropy document

Lecture 6

- Term frequency \& weighting
- Vector space, similarity, tf-idf (very important) (need to know formulas)

- Scoring Example (ranked retrieval I think!)

Lecture 7

- Retrieval of lists (know all formulas)
- Champion list, clustering, idea of what they are
- Basic knowledge of fields of zones
- Aggregate scores basic ideas

Lecture 8

- Difference between query and information needs
- Precision \& recall
- Combined measure F, know definition and what happens when alpha(a) $=1 / 2$
- Kappa model / statistic
- Judges for comparing search

Lecture 2

- biword indexe
- positional index

Lecture 5

- front coding

Quick Notes

- Clustering: Given a set of docs, group them into clusters based on their contents.
- Classification: Given a set of topics, plus a new doc D, decide which topic(s) D belongs to.
- Ranking: Can we learn how to best order a set of documents, e.g., a set of search results
- Tokenization has language issues e.g. tokenizing from English to French / Arabic
- Stop words / list: get rid of common words that bear no meaning, care.. need them for
- Phrase queries: "King of Denmark"
- Poems: "To be or not to be"
- Case folding: reduce all letters to lowercase.
- Lemmatization: reduce inflectional/variant forms to base form e.g.
- am, are, is = be
- car, cars, car's, cars' = car
- the boy's cars are different colors = the boy car be different color
- Skip Pointers [Lecture 2]
- Term document incidence matrix is a chart that shows if a term appears in a document by a 1 or 0.
- Inverted index shows the docID's in which a term occurs.
- Cosine similarity finds out how close a query and a document are together.
- How to judge whether a retrieval system is good or not;
- How fast does index
- How fast does it search
- What is the cost per searching for a query
- Why would you not use the boolean retrieval model over the vector retrieval model?
- Requires knowledge of how to construct boolean queries
- All or nothing
- Why is accuracy not a useful measure for web information retrieval?
- In a nutshell: 'all or nothing rule'
- In an IR system, only a small fraction of the documents are relevant. Even if we have a good IR system that only returns the relevant documents, when compared with a poor system (for example that always returns nothing) there is little difference in accuracy, thus this measurement can't help evaluate an IR system.
- Simple trick to maximize accuracy in IR: always say no and return nothing. You then get 99.99\% accuracy on most queries.
- Soundex - Class of heuristics to expand a query into phonetic equivalents.
- Heaps Law - How many distinct terms are there in the term vocabulary.
- Heaps Law is the simplest possible relationship between collection size and vocabulary size in log-log space.
- Heaps law: $M=k T^{\wedge} b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \leq k \leq 100$ and $b \approx 0.5$. Thus $M \approx k \sqrt{ } T$
- Notice $\log \mathrm{M}=\log k+\operatorname{blog} T(y=c+b x)$
- Example One
- Angs Sample (.png)
-
- Looking at a collection of web pages, you find that there are 8,000 different terms in the first 30,000 tokens and 25,000 different terms in the first 7,000,000 tokens. Assume a search engine indexes a total of 60,000,000,000 ($6 \times 10 \wedge 10$) pages, containing 400 tokens on average. What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

○
Equation 1

- $\log (\mathrm{M} 1)=\log \mathrm{k}+\operatorname{blog}(\mathrm{T} 1)$
- $\log (8,000)=\log k+\operatorname{blog}(30,000)$
- Equation 2
- $\log (\mathrm{M} 2)=\operatorname{logk}+\operatorname{blog}(\mathrm{T} 2)$
- $\log (25,000)=\log \mathrm{k}+\operatorname{blog}(7,000,000)$

○

- To get b (take equation 1 from equation 2) (drop the logk)
- $\log (25,000)-\log (8,000)=b^{*} \log (7,000,000)-\log (30,000)$
- thus $b=(\log (25,000)-\log (8,000)) /(\log (7,000,000)-\log (30,000))$
- $b=0.20897587542 \approx b=0.209$

O

- To get k (sub binto either equation)
- $\log (8,000)=\operatorname{logk}+0.209 * \log (30,000)$
- $\log \mathrm{k}=\log (8,000)-(0.209 * \log (30,000))$
- logk $=2.96747965343($ ang got 2.9675)
- $k=10^{\wedge} 2.96747965343$
- $\mathrm{k}=927.854019418$ (ang got 927.897: he only uses 10 ^ 2.9675)
$\log (M)=\log k+0.209 * \log (60,000,000,000 * 400)$
$\log (M)=2.96747965343+2.25263361133$
$\log (M)=5.76394380295 \approx 5.763$
thus $M=10^{\wedge} 5.76394380295=580689.272345 \approx 5.8 \times 10^{\wedge} 5$
- Example Two

Angs Slides
Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first $1,000,000$ tokens. Assume a search engine indexes a total of $20,000,000,000\left(2 \times 10^{\wedge} 10\right)$ pages, containing 200 tokens on average. What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Equation 1

- $\log (\mathrm{M} 1)=\log \mathrm{k}+\operatorname{blog}(\mathrm{T} 1)$
- $\log (3,000)=\log k+\operatorname{blog}(10,000)$

Equation 2

- $\log (\mathrm{M} 2)=\operatorname{logk}+\operatorname{blog}(\mathrm{T} 2)$
- $\log (30,000)=\log k+\operatorname{blog}(1,000,000)$

To get b (take equation 1 from equation 2)

- $\log (30,000)-\log (3,000)=b * \log (1,000,000)-\log (10,000)$
- thus $b=(\log (30,000)-\log (3,000)) /(\log (1,000,000)-\log (10,000))$
- $\mathrm{b}=0.5$

To get k (sub b into either equation)

- $\log (3,000)=\log k+0.5 * \log (10,000)$
- $\log \mathrm{k}=\log (3,000)-(0.5 * \log (10,000))$
- logk $=1.47712125472$
- $k=10^{\wedge} 1.47712125472$
- $k=30$
$\log (M)=\log k+0.5 * \log (20,000,000,000 * 200)$
$\log (M)=1.47712125472+6.30102999566$
$\log (M)=7.77815125038 \approx 7.778$
thus $\mathrm{M}=10^{\wedge} 7.77815125038=59999999.9995 \approx 5.9 \times 10^{\wedge} 7$
//thus $M=10^{\wedge} 7.77815125038=61376200.5165 \approx 6 \times 10^{\wedge} 7$
- Zipfs Law - How the terms are distributed across documents.
- Blocking - Store pointers to every kth term string. By increasing the block size, we get better compression. However, there is a tradeoff between compression and the speed of term lookup.
- Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of $k=$ 4, 8 and 16.
- For $\mathrm{k}=8$.
- For every block of 8, need to store extra 8 bytes for length
- For every block of 8 , can save 7 * 3 bytes for term pointer. (each block usually 4 bytes, but now only storing pointer to first letter so 1 byte)
- Saving (+8-21)/8*400K(terms) $=0.65 \mathrm{MB}$
- ie.
- 8 extra for length \& 7×3 less $=21$ thus $-8+21=13$ bytes saved
- 7 (one less than block as with 8 lengths only need 7 pointers to first letter) +8 (lengths) $=15 \& 7 x$ 4 (original bytes needed) $=28$ thus $28-15=13$
- Entropy = measure of randomness \& measure of compressibility
- $H(p 1, \ldots, p n)=p 1 \log (1 / p 1)+p 2 \log (1 / p 2)+\ldots+p n \log (1 / p n)$
- Entropy enables one to compute the compressibility of data without actually needing to compress the data first!
- $\quad-\operatorname{plog}(p)=\operatorname{plog}(1 / p)$
- p is the probability of an event
- $1 / p$ is the number of times the event occurs
- $\log (k)$ measures how many bits are needed to represent the outcomes
- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE and LINE.
- The document frequency is the number of documents in the collection that the term occurs in.
- The tf-idf weighting scheme assigns to term ta weight in document d given by
- Champion List - The idea of champion lists (sometimes also called fancy lists or top docs) is to precompute, for each term t in the dictionary, the set of the r documents with the highest weights for t; the value of r is chosen in advance. For tf-idf weighting, these would be the r documents with the highest tf values for term t. We call this set of r documents the champion list for term t.
- At query time, only compute scores for docs in the champion list of some query term. Pick the K top-scoring docs from amongst these
- Clustering is the grouping of a set of documents into clusters. Documents within a cluster should be as similar as possible; and documents in one cluster should be as dissimilar as possible from documents in other clusters. Clustering puts together documents that share many terms.
- A zone is a region of the doc that can contain an arbitrary amount of text, e.g., Title, Abstract, References
- Build inverted indexes on zones as well to permit querying e.g. find docs with merchant in the title zone and matching the query gentle rain
- Aggregate scores - We've seen that score functions can combine cosine, static quality, proximity, etc. How do we know the best combination? Some applications are expert-tuned. Increasingly common: machine-learned
- Relevance: query vs. information need
- Relevance to what?
- First take: relevance to the query, "Relevance to the query" is very problematic.
- Information need i : "I am looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine."
- This is an information need, not a query.
- Query q: [red wine white wine heart attack]
- Consider document d^{\prime} : At heart of his speech was an attack on the wine industry lobby for downplaying the role of red and white wine in drunk driving.
- d^{\prime} is an excellent match for query q
- d^{\prime} is not relevant to the information need i.
- User happiness can only be measured by relevance to an information need, not by relevance to queries.
- The Combined Measure F allows us to measure the tradeoff between precision and recall.
- $F=\frac{2 P R}{P+R}$
- When alpha(a) $=1 / 2$
- we have the same weighting for precision and recall
- if alpha(a) $=0.6$ then we have more weighting for precision i.e. we want to focus more on precision than recall
- Kappa is a measure of how much judges agree or disagree.

$$
\circ \frac{P(A)-P(E)}{1-P(E)}
$$

- Transition Probability Matrix
- With teleporting, we cannot get stuck in a dead end.
- More generally, we require that the Markov chain be ergodic (ergodic is used to describe a dynamical system which, broadly speaking, has the same behavior averaged over time as averaged over the space of all the system's states).

Solution:

	$P_{t}\left(d_{0}\right)$	$P_{t}\left(d_{1}\right)$	$P_{t}\left(d_{2}\right)$				
t_{0}	0	0	1	0.3333	0.3333	0.3333	$\mathrm{~d} \vec{P}$
t_{1}	0.3333	0.3333	0.3333	0.28327	0.58324	0.13329	$\mathrm{~d} \vec{P}^{2}$
t_{2}	0.28327	0.58324	0.13329	0.200752	0.725669	0.073279	$\mathrm{~d} \vec{P}^{3}$

$\mathrm{a}=0.1$
$0.1 / 3=0.0333$
$1-(0.1 / 3 * 1)=0.9666 / 2=0.4833$
$1-\left(0.1 / 3^{*} 2\right)=0.9333$

To get 0.3333 (on t0 on left of 0.3333 's)

- 0 * $0.4833+0$ * $0.0333+1^{*} 0.3333=0.3333$

To get 0.3333 (on t0 in middle of 0.3333 's)

- 0 * $0.4833+0$ * $0.9333+1$ * $0.3333=0.3333$

To get 0.3333 (on t0 in right of 0.3333 's)

- 0 * $0.3333+0$ * $0.0333+1^{*} 0.3333=0.3333$

Copy these values down to t1 \& repeat process

To get 0.28327

- 0.3333 * $0.4833+0.3333$ * $0.0333+0.3333$ * 0.3333
- $0.16108389+0.01109889+0.11108889=0.28327$ (round to 5 decimal places)

To get 0.58324

- 0.3333 * $0.4833+0.3333$ * $0.9333+0.3333$ * 0.3333
- $0.16108389+0.31106889+0.11108889=0.58324$

To get 0.13329

- 0.3333 * $0.0333+0.3333$ * $0.0333+0.3333$ * 0.3333
- $0.01109889+0.01109889+0.11108889=0.13328667=0.13329$

Decode VB code of documents IDs: 000000101001011010010001 (Autumn 2012)

- 00000010 | 10010110 | 10010001 (break it up into 8-bit segments)
- if 8-bit block begins with 1 , remove the 1 , then remove all zeroes to next one
- else if 8 -bit block does not begin with 1 , remove all zeroes to the next 1
- Note: if block after first block begins with one, then it is part of the first block
- in this case put their results together
- i.e. 10 10110 => 100010110
- For each digit in 100010110 (from the right hand side)
- if its a one
- get its power for its position
- i.e. for 100011111 its power is 1
- i.e. for 100011110 its power is 2

■ i.e. for 100011100 its power is 4

- i.e. for 100011000 its power is 8
- add up the powers for all of the digit 1's
- i.e. for 100010110
- $2+4+16+256=278$
- For each digit in 10001
- $1+16=17$
- Answer: $278=100010110$ and $17=10001$ thus doc 278 and doc 17

Decode Gamma code of documents IDs: 11110100011111000101 (Autumn 2012)

- Break up into blocks, where they are separated by the groups of consecutive 1's
- i.e. 111101000 \& 11111000101
- Get rid of the 1 's and the first zero
- the amount of 1 's removed should be equal to the number of digits remaining before the next group of consecutive 1's
- i.e. take the ones and zero from 111101000
- we get 1000
- then add back on the 1 to the front (that we chopped off when encoding)
- i.e. 11000
- then use same rules as VB decoding with regards to powers
- we get $8+16=24$
- i.e. next take the ones and zero from 11111000101
- we get 00101
- then 100101
- then $1+4+32=37$
- Answer: $\mathbf{2 4} \mathbf{= 1 1 0 0 0}$ gamma code: $\mathbf{1 1 1 1 0 1 0 0 0}$ and $\mathbf{3 7}$ = $\mathbf{1 0 0 1 0 1}$ gamma code: $\mathbf{1 1 1 1 1 0 0 0 1 0 1}$

