e cosine similarity

General / Subtle Notes From Ang
e If you understand all tutorials and information from slides you will at least get a first class.
e Search: Why are skip pointers not useful for queries of the form x OR y
o Found lots of documents with similar questions to Assignment 2 and other questions
relevant to information retrievall

e Need to know reason term has high weight
o Onereason is tf
o The other is idf

e Remember cosine similarity between query and document
o Easy if you understand inner product(dot product)

Rich’s List
e The term vocabulary
e Dictionaries and tolerant retrieval
e Index compression - basic idea of why, how lossy vs lossless know
e Postings compression
[

Link analysis: Random walks, Markov chains, calculate pagerank (definitely on the exam) issues
of this approach.”

What to Revise (In Ang’s Notes)

Lecture 1
e Need to know pritty much all of it
Lecture 2
e Need to know pritty much all of it
Lecture 3
e Tolerant retrieval
e Know the exercises on wild cards, permuterm etc.
e Jaccard, contexts, soundex on index (rules will be provided)
e Levenshtein
Lecture 4
e Not covered
Lecture 5
e Heaps Law + Zipf's Law (very important)
e Blocking, storing gaps
e Know bytecodes, (static variables)?, gamma
e Entropy / entropy document
Lecture 6
e Term frequency & weighting
e Vector space, similarity, tf-idf (very important) (need to know formulas)

e Scoring Example (ranked retrieval | think!)
Lecture 7

e Retrieval of lists (know all formulas)

e Champion list, clustering, idea of what they are

e Basic knowledge of fields of zones

e Aggregate scores basic ideas
Lecture 8

Difference between query and information needs

e Precision & recall
e Combined measure F, know definition and what happens when alpha(a) = %2
e Kappa model / statistic
e Judges for comparing search
Lecture 2

e biword indexe

e positional index
Lecture 5

e front coding

Quick Notes

e Clustering: Given a set of docs, group them into clusters based on their contents.
e Classification: Given a set of topics, plus a new doc D, decide which topic(s) D belongs to.
e Ranking: Can we learn how to best order a set of documents, e.g., a set of search results

Tokenization has language issues e.g. tokenizing from English to French / Arabic
Stop words / list: get rid of common words that bear no meaning, care.. need them for
o Phrase queries: “King of Denmark”
o Poems: “To be or not to be”
Case folding: reduce all letters to lowercase.
Lemmatization: reduce inflectional/variant forms to base form e.g.
o am,are,is = be
o car, cars, car's, cars' = car
o the boy's cars are different colors = the boy car be different color
e Skip Pointers [Lecture 2]

e Term document incidence matrix is a chart that shows if a term appears in a document by a 1 or
0.
Inverted index shows the doclD’s in which a term occurs.
Cosine similarity finds out how close a query and a document are together.

e How to judge whether a retrieval system is good or not;
o How fast does index

o How fast does it search
o What is the cost per searching for a query
e Why would you not use the boolean retrieval model over the vector retrieval model?
o Requires knowledge of how to construct boolean queries
o All or nothing
e Why is accuracy not a useful measure for web information retrieval?

o In a nutshell: ‘all or nothing rule’

o In an IR system, only a small fraction of the documents are relevant. Even if we have a
good IR system that only returns the relevant documents, when compared with a poor
system (for example that always returns nothing) there is little difference in accuracy,
thus this measurement can’t help evaluate an IR system.

o Simple trick to maximize accuracy in IR: always say no and return nothing. You then get
99.99% accuracy on most queries.

e Soundex - Class of heuristics to expand a query into phonetic equivalents.

Heaps Law - How many distinct terms are there in the term vocabulary.
Heaps Law is the simplest possible relationship between collection size and vocabulary size in
log-log space.
Heaps law: M = KT”b
M is the size of the vocabulary, T is the number of tokens in the collection.
Typical values for the parameters k and b are: 30 <k <100 and b = 0.5. Thus M = k VT
Notice logM = logk + blogT (y = ¢ + bx)
Example One
o Angs Sample (.png)
o
o Looking at a collection of web pages, you find that there are 8,000 different terms in the
first 30,000 tokens and 25,000 different terms in the first 7,000,000 tokens. Assume a
search engine indexes a total of 60,000,000,000 (6 x 10 ~ 10) pages, containing 400
tokens on average. What is the size of the vocabulary of the indexed collection as
predicted by Heaps’ law?

Equation 1
m log(M1) = logk + blog(T1)
m 10g(8,000) = logk + blog(30,000)
o Equation 2
m log(M2) = logk + blog(T2)
m 10g(25,000) = logk + blog(7,000,000)

To get b (take equation 1 from equation 2) (drop the logk)
m 10g(25,000) - log(8,000) = b * log(7,000,000) - log(30,000)
m thus b = (log(25,000) - log(8,000)) / (log(7,000,000) - log(30,000))
m b=0.20897587542 ~ b = 0.209

To get k (sub b into either equation)

log(8,000) = logk + 0.209 * log(30,000)
logk =10g(8,000) - (0.209 * log(30,000))
logk = 2.96747965343 (ang got 2.9675)
k =10"2.96747965343

log(M) = logk + 0.209 * log(60,000,000,000 * 400)

log(M) = 2.96747965343 + 2.25263361133

log(M) = 5.76394380295 ~ 5.763

thus M = 10 ~ 5.76394380295 = 580689.272345 ~ 5.8 X 10 * 5

o O O O O

e Example Two
o Angs Slides

o

k = 927.854019418 (ang got 927.897: he only uses 10 * 2.9675)

o Looking at a collection of web pages, you find that there are 3000 different terms in the
first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens. Assume a
search engine indexes a total of 20,000,000,000 (2 x 10 ~ 10) pages, containing 200
tokens on average. What is the size of the vocabulary of the indexed collection as

predicted by Heaps’ law?

Equation 1
m log(M1) = logk + blog(T1)
m 1log(3,000) = logk + blog(10,000)
o Equation 2
m log(M2) = logk + blog(T2)
= 10g(30,000) = logk + blog(1,000,000)

To get b (take equation 1 from equation 2)

m 10g(30,000) - log(3,000) = b * log(1,000,000) - log(10,000)
m thus b = (log(30,000) - log(3,000)) / (log(1,000,000) - log(10,000))

m b=05

To get k (sub b into either equation)

m log(3,000) = logk + 0.5 * log(10,000)
logk =10g(3,000) - (0.5 * 1og(10,000))
logk =1.47712125472
k=10"1.47712125472
k=30

log(M) = logk + 0.5 * log(20,000,000,000 * 200)

log(M) = 1.47712125472 + 6.30102999566

log(M) = 7.77815125038 ~ 7.778

thus M = 10 A 7.77815125038 = 59999999.9995 ~ 5.9 x 10 A 7
/lthus M = 10 A 7.77815125038 = 61376200.5165 ~ 6 x 10 7

o O O O O O

e Zipfs Law - How the terms are distributed across documents.

Blocking - Store pointers to every kth term string. By increasing the block size, we get better
compression. However, there is a tradeoff between compression and the speed of term lookup.
Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k =
4, 8 and 16.
o Fork=8.
o For every block of 8, need to store extra 8 bytes for length
o For every block of 8, can save 7 * 3 bytes for term pointer. (each block usually 4 bytes, but now
only storing pointer to first letter so 1 byte)
Saving (+8 — 21)/8 * 400K(terms) = 0.65 MB
ie.
m 8 extraforlength & 7 x 3 less = 21 thus -8 +21 = 13 bytes saved
m 7(one less than block as with 8 lengths only need 7 pointers to first letter) + 8(lengths) = 15 & 7 X
4(original bytes needed) = 28 thus 28 - 15 =13

Entropy = measure of randomness & measure of compressibility
H(p1,...,pn) = p1log(1/p1) + p2log(1/p2) + ... + pnlog(1/pn)
Entropy enables one to compute the compressibility of data without actually needing to compress
the data first!
— plog(p) = plog(1/p)
o pis the probability of an event
o 1/pis the number of times the event occurs
o log(k) measures how many bits are needed to represent the outcomes

We want high weights for rare terms like ARACHNOCENTRIC.

We want low (positive) weights for frequent words like GOOD, INCREASE and LINE.

The document frequency is the number of documents in the collection that the term occurs in.
The tf-idf weighting scheme assigns to term t a weight in document d given by

Champion List - The idea of champion lists (sometimes also called fancy lists or top docs) is to
precompute, for each term t in the dictionary, the set of the r documents with the highest weights
for t; the value of r is chosen in advance. For tf-idf weighting, these would be the r documents
with the highest tf values for term t. We call this set of r documents the champion list for term t.

At query time, only compute scores for docs in the champion list of some query term. Pick the K
top-scoring docs from amongst these

Clustering is the grouping of a set of documents into clusters. Documents within a cluster should
be as similar as possible; and documents in one cluster should be as dissimilar as possible from
documents in other clusters. Clustering puts together documents that share many terms.

A zone is a region of the doc that can contain an arbitrary amount of text, e.g., Title, Abstract,
References

e Build inverted indexes on zones as well to permit querying e.g. find docs with merchant in the title
zone and matching the query gentle rain

e Aggregate scores - We've seen that score functions can combine cosine, static quality, proximity,
etc. How do we know the best combination? Some applications are expert-tuned. Increasingly
common: machine-learned

Relevance: query vs. information need

Relevance to what?

First take: relevance to the query, “Relevance to the query” is very problematic.

Information need i : “I am looking for information on whether drinking red wine is more effective at
reducing your risk of heart attacks than white wine.”

This is an information need, not a query.

Query q: [red wine white wine heart attack]

Consider document d": At heart of his speech was an attack on the wine industry lobby for
downplaying the role of red and white wine in drunk driving.

d'is an excellent match for query q . . .

d'is not relevant to the information need i .

User happiness can only be measured by relevance to an information need, not by relevance to
queries.

e The Combined Measure F allows us to measure the tradeoff between precision and recall.

__2PR

P+R
o When alpha(a) = 1/2
m we have the same weighting for precision and recall
m if alpha(a) = 0.6 then we have more weighting for precision i.e. we want to focus
more on precision than recall

e Kappa is a measure of how much judges agree or disagree.
P(A)-P(E)
1-P(E)

e Transition Probability Matrix
o With teleporting, we cannot get stuck in a dead end.

o More generally, we require that the Markov chain be ergodic (ergodic is used to describe a
dynamical system which, broadly speaking, has the same behavior averaged over time as averaged over the

space of all the system's states).

Autumn 2012

http://en.wikipedia.org/wiki/Dynamical_system_(definition)

be;nz lion
F "'\‘_\:I Ir/-‘—\
a0 | o a1)
l‘\-.__ / om \ Py
- A

Solution:
d2 dp dy da
L o dp o do
‘?“"*J Link Matree © 1 10
_/ T a0 0
car d, 1 1 1
f|i|:] {'!T| ﬂrg
L e g e iy 05050
Transition matrix without teleporting dy 0 1 0
&bl
f-{{] '!.jl'l l!'-iril-
I e . . a4 o 04833 04833 0.0333
Transition matrix with teleporting o = 0.1 d, 0.0333 09333 0.0333
ds .3333 0.3333 0.3333
Py(dy) Fi(d,) Fy(d,) -
to 0 0 1 0.3333 (.3333 0.3333 dF
t; 03333 0.3333 0.3333 0.28327 0.58324 0.13329 dP°
t, 0.28327 0.58324 0.13320 0.200752 0.725669 0.073279 dP°
a=01
0.1/3=0.0333

1-(0.1/3*1)=0.9666/2 = 0.4833
1-(0.1/3*2)=0.9333

To get 0.3333 (on t0 on left of 0.3333’s)

e 0%*0.4833+0*0.0333+1*0.3333=0.3333

To get 0.3333 (on t0 in middle of 0.3333’s)

e 0%*0.4833+0*0.9333+1*0.3333 =0.3333

To get 0.3333 (on t0 in right of 0.3333’s)

e 07*0.3333+0*0.0333 +1*0.3333 =0.3333

Copy these values down to t1 & repeat process

To get 0.28327

e 0.3333*0.4833 +0.3333 * 0.0333 + 0.3333 * 0.3333

e 0.16108389 +0.01109889 +0.11108889 =0.28327 (round to 5 decimal places)
To get 0.58324

e 0.3333*0.4833 + 0.3333 * 0.9333 + 0.3333 * 0.3333

e 0.16108389 + 0.31106889 + 0.11108889 = 0.58324
To get 0.13329

e 0.3333*0.0333 +0.3333 * 0.0333 + 0.3333 * 0.3333

e 0.01109889 + 0.01109889 + 0.11108889 = 0.13328667 = 0.13329

Decode VB code of documents IDs: 000000101001011010010001 (Autumn 2012)
e 00000010 | 10010110 | 10010001 (break it up into 8-hit segments)
e if 8-bit block begins with 1, remove the 1, then remove all zeroes to next one
e else if 8-bit block does not begin with 1, remove all zeroes to the next 1
e Note: if block after first block begins with one, then it is part of the first block
o in this case put their results together
o ie.10.... 10110 => 100010110

e For each digit in 100010110 (from the right hand side)
o ifitsaone
m getits power for its position
m i.e. for 100011111 its poweris 1
m i.e. for 100011110 its power is 2
m i.e. for 100011100 its power is 4
m i.e. for 100011000 its power is 8
o add up the powers for all of the digit 1's
o i.e.for 100010110
m 2+4+16+256=278

e For each digitin 10001
e 1+16=17

e Answer: 278 = 100010110 and 17 = 10001 thus doc 278 and doc 17

Decode Gamma code of documents IDs: 11110100011111000101 (Autumn 2012)
e Break up into blocks, where they are separated by the groups of consecutive 1’s
o i.e.111101000 & 11111000101
e Getrid of the 1's and the first zero
o the amount of 1's removed should be equal to the number of digits remaining before the
next group of consecutive 1’s

o i.e. take the ones and zero from 111101000

we get 1000

then add back on the 1 to the front (that we chopped off when encoding)
i.e. 11000

then use same rules as VB decoding with regards to powers

we get8+16 =24

o i.e. next take the ones and zero from 11111000101
m we get 00101
m then 100101
m thenl+4+32=37

e Answer: 24 = 11000 gamma code: 111101000 and 37 = 100101 gamma code: 11111000101

