
● cosine similarity 

 

 

General / Subtle Notes From Ang 

● If you understand all tutorials and information from slides you will at least get a first class. 

● Search: Why are skip pointers not useful for queries of the form x OR y 

○ Found lots of documents with similar questions to Assignment 2 and other questions 

relevant to information retrieval! 

 

● Need to know reason term has high weight 

○ One reason is tf 

○ The other is idf 

 

● Remember cosine similarity between query and document 

○ Easy if you understand inner product( dot product ) 

 

 

Rich’s List 

● The term vocabulary  

● Dictionaries and tolerant retrieval 

● Index compression - basic idea of why, how lossy vs lossless know 

● Postings compression 

● Link analysis: Random walks, Markov chains, calculate pagerank (definitely on the exam) issues 

of this approach." 

 

 

 

What to Revise ( In Ang’s Notes ) 

 

Lecture 1 

● Need to know pritty much all of it 

Lecture 2 

● Need to know pritty much all of it 

Lecture 3 

● Tolerant retrieval 

● Know the exercises on wild cards, permuterm etc. 

● Jaccard, contexts, soundex on index (rules will be provided) 

● Levenshtein 

Lecture 4 

● Not covered 

Lecture 5 

● Heaps Law + Zipf's Law (very important) 

● Blocking, storing gaps 

● Know bytecodes, (static variables)?, gamma 

● Entropy / entropy document  

Lecture 6 

● Term frequency & weighting 

● Vector space, similarity, tf-idf (very important) (need to know formulas) 



● Scoring Example (ranked retrieval I think!) 

Lecture 7 

● Retrieval of lists (know all formulas) 

● Champion list, clustering, idea of what they are 

● Basic knowledge of fields of zones 

● Aggregate scores basic ideas 

Lecture 8 

● Difference between query and information needs 

● Precision & recall 

● Combined measure F, know definition and what happens when alpha(a) = ½ 

● Kappa model / statistic 

● Judges for comparing search 

 

 

Lecture 2 

● biword indexe 

● positional index 

Lecture 5 

● front coding 

 

 

 

Quick Notes 

● Clustering: Given a set of docs, group them into clusters based on their contents. 

● Classification: Given a set of topics, plus a new doc D, decide which topic(s) D belongs to. 

● Ranking: Can we learn how to best order a set of documents, e.g., a set of search results 

 

 

● Tokenization has language issues e.g. tokenizing from English to French / Arabic 

● Stop words / list: get rid of common words that bear no meaning, care.. need them for  

○ Phrase queries: “King of Denmark” 

○ Poems: “To be or not to be” 

● Case folding: reduce all letters to lowercase. 

● Lemmatization: reduce inflectional/variant forms to base form e.g. 

○ am, are, is   =   be 

○ car, cars, car's, cars'    =   car 

○ the boy's cars are different colors   =   the boy car be different color 

● Skip Pointers [Lecture 2] 

 

 

● Term document incidence matrix is a chart that shows if a term appears in a document by a 1 or 

0. 

● Inverted index shows the docID’s in which a term occurs. 

● Cosine similarity finds out how close a query and a document are together. 

 

 

● How to judge whether a retrieval system is good or not; 

○ How fast does index 



○ How fast does it search 

○ What is the cost per searching for a query 

● Why would you not use the boolean retrieval model over the vector retrieval model?  

○ Requires knowledge of how to construct boolean queries 

○ All or nothing 

● Why is accuracy not a useful measure for web information retrieval? 

○ In a nutshell: ‘all or nothing rule’ 

○ In an IR system, only a small fraction of the documents are relevant. Even if we have a 

good IR system that only returns the relevant documents, when compared with a poor 

system (for example that always returns nothing) there is little difference in accuracy, 

thus this measurement can’t help evaluate an IR system. 

○ Simple trick to maximize accuracy in IR: always say no and return nothing. You then get 

99.99% accuracy on most queries. 

 

 

● Soundex - Class of heuristics to expand a query into phonetic equivalents. 

 

 

● Heaps Law - How many distinct terms are there in the term vocabulary. 

● Heaps Law is the simplest possible relationship between collection size and vocabulary size in 

log-log space. 

● Heaps law: M = kT^b 

● M is the size of the vocabulary, T is the number of tokens in the collection. 

● Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. Thus M ≈ k √ T 

● Notice logM = logk + blogT (y = c + bx) 

● Example One 

○ Angs Sample (.png) 

○  

○ Looking at a collection of web pages, you find that there are 8,000 different terms in the 

first 30,000 tokens and 25,000 different terms in the first 7,000,000 tokens. Assume a 

search engine indexes a total of 60,000,000,000 (6 × 10 ^ 10 ) pages, containing 400 

tokens on average. What is the size of the vocabulary of the indexed collection as 

predicted by Heaps’ law? 

○  

○ Equation 1 

■ log(M1) = logk + blog(T1)  

■ log(8,000) = logk + blog(30,000) 

○ Equation 2 

■ log(M2) = logk + blog(T2)  

■ log(25,000) = logk + blog(7,000,000) 

○  

○ To get b (take equation 1 from equation 2) (drop the logk) 

■ log(25,000) - log(8,000) = b * log(7,000,000) - log(30,000) 

■ thus b = (log(25,000) - log(8,000)) / (log(7,000,000) - log(30,000)) 

■ b = 0.20897587542   b = 0.209 

○  

○ To get k (sub b into either equation) 



■ log(8,000) = logk + 0.209 * log(30,000) 

■ logk = log(8,000) - (0.209 * log(30,000)) 

■ logk = 2.96747965343 (ang got 2.9675) 

■ k = 10 ^ 2.96747965343 

■ k = 927.854019418 (ang got 927.897: he only uses 10 ^ 2.9675) 

○  

○ log(M) = logk + 0.209 * log(60,000,000,000 * 400) 

○ log(M) = 2.96747965343 + 2.25263361133 

○ log(M) = 5.76394380295   5.763 

○ thus M = 10 ^ 5.76394380295 = 580689.272345   5.8 x 10 ^ 5 

 

● Example Two 

○ Angs Slides 

○  

○ Looking at a collection of web pages, you find that there are 3000 different terms in the 

first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens. Assume a 

search engine indexes a total of 20,000,000,000 (2 × 10 ^ 10 ) pages, containing 200 

tokens on average. What is the size of the vocabulary of the indexed collection as 

predicted by Heaps’ law? 

○  

○ Equation 1 

■ log(M1) = logk + blog(T1)  

■ log(3,000) = logk + blog(10,000) 

○ Equation 2 

■ log(M2) = logk + blog(T2)  

■ log(30,000) = logk + blog(1,000,000) 

○  

○ To get b (take equation 1 from equation 2) 

■ log(30,000) - log(3,000) = b * log(1,000,000) - log(10,000) 

■ thus b = (log(30,000) - log(3,000)) / (log(1,000,000) - log(10,000)) 

■ b = 0.5 

○  

○ To get k (sub b into either equation) 

■ log(3,000) = logk + 0.5 * log(10,000) 

■ logk = log(3,000) - (0.5 * log(10,000)) 

■ logk = 1.47712125472 

■ k = 10 ^ 1.47712125472 

■ k = 30 

○  

○ log(M) = logk + 0.5 * log(20,000,000,000 * 200) 

○ log(M) = 1.47712125472 + 6.30102999566 

○ log(M) = 7.77815125038   7.778 

○ thus M = 10 ^ 7.77815125038 = 59999999.9995   5.9 x 10 ^ 7 

○ //thus M = 10 ^ 7.77815125038 = 61376200.5165   6 x 10 ^ 7 

 

 

● Zipfs Law - How the terms are distributed across documents.  



 

 

● Blocking - Store pointers to every kth term string. By increasing the block size, we get better 

compression. However, there is a tradeoff between compression and the speed of term lookup. 

● Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 

4, 8 and 16. 

○ For k = 8.  

○ For every block of 8, need to store extra 8 bytes for length  

○ For every block of 8, can save 7 * 3 bytes for term pointer. (each block usually 4 bytes, but now 

only storing pointer to first letter so 1 byte) 
○ Saving (+8 – 21)/8 * 400K(terms) = 0.65 MB 

○ ie.  

■ 8 extra for length & 7 x 3 less = 21  thus  -8 +21 = 13 bytes saved 

■ 7(one less than block as with 8 lengths only need 7 pointers to first letter) + 8(lengths) = 15 & 7 x 

4(original bytes needed) = 28  thus  28 - 15 = 13   

 

 

● Entropy = measure of randomness & measure of compressibility 

● H(p1,…,pn) = p1log(1/p1) + p2log(1/p2) + … + pnlog(1/pn) 

● Entropy enables one to compute the compressibility of data without actually needing to compress 

the data first! 

● – plog(p) = plog(1/p) 

○ p is the probability of an event 

○ 1/p is the number of times the event occurs 

○ log(k) measures how many bits are needed to represent the outcomes 

 

 

● We want high weights for rare terms like ARACHNOCENTRIC. 

● We want low (positive) weights for frequent words like GOOD, INCREASE and LINE. 

● The document frequency is the number of documents in the collection that the term occurs in. 

● The tf-idf weighting scheme assigns to term t a weight in document d given by 

 

 

● Champion List - The idea of champion lists (sometimes also called fancy lists or top docs) is to 

precompute, for each term t in the dictionary, the set of the r documents with the highest weights 

for t; the value of r is chosen in advance. For tf-idf weighting, these would be the r documents 

with the highest tf values for term t. We call this set of r documents the champion list for term t. 

● At query time, only compute scores for docs in the champion list of some query term. Pick the K 

top-scoring docs from amongst these 

 

 

● Clustering is the grouping of a set of documents into clusters. Documents within a cluster should 

be as similar as possible; and documents in one cluster should be as dissimilar as possible from 

documents in other clusters. Clustering puts together documents that share many terms. 

 

 

● A zone is a region of the doc that can contain an arbitrary amount of text, e.g., Title, Abstract, 

References 



● Build inverted indexes on zones as well to permit querying e.g. find docs with merchant in the title 

zone and matching the query gentle rain 

 

 

● Aggregate scores - We’ve seen that score functions can combine cosine, static quality, proximity, 

etc. How do we know the best combination? Some applications are expert-tuned. Increasingly 

common: machine-learned 

 

 

● Relevance: query vs. information need 

● Relevance to what? 

● First take: relevance to the query, “Relevance to the query” is very problematic. 

● Information need i : “I am looking for information on whether drinking red wine is more effective at 

reducing your risk of heart attacks than white wine.” 

● This is an information need, not a query. 

● Query q: [red wine white wine heart attack] 

● Consider document d′: At heart of his speech was an attack on the wine industry lobby for 

downplaying the role of red and white wine in drunk driving. 

● d′ is an excellent match for query q . . . 

● d′ is not relevant to the information need i . 

● User happiness can only be measured by relevance to an information need, not by relevance to 

queries. 

 

 

● The Combined Measure F allows us to measure the tradeoff between precision and recall. 

○ F =
2PR

P   R
 

○ When alpha(a) = 1/2  

■ we have the same weighting for precision and recall 

■ if alpha(a) = 0.6 then we have more weighting for precision i.e. we want to focus 

more on precision than recall 

 

 

● Kappa is a measure of how much judges agree or disagree. 

○ 
P A  - P   

1 - P   
 

 

 

● Transition Probability Matrix 

○ With teleporting, we cannot get stuck in a dead end. 

○ More generally, we require that the Markov chain be ergodic (ergodic is used to describe a 

dynamical system which, broadly speaking, has the same behavior averaged over time as averaged over the 

space of all the system's states). 

 

 

Autumn 2012 

http://en.wikipedia.org/wiki/Dynamical_system_(definition)


 

 
 

 
a = 0.1 

0.1 / 3 = 0.0333 

1 - (0.1 / 3 * 1) = 0.9666 / 2 = 0.4833 

1 - (0.1 / 3 * 2) = 0.9333 

 

 

 

To get 0.3333 (on t0 on left of 0.3333’s) 

● 0 * 0.4833 + 0 * 0.0333 + 1 * 0.3333 = 0.3333 

To get 0.3333 (on t0 in middle of 0.3333’s) 

● 0 * 0.4833 + 0 * 0.9333 + 1 * 0.3333 = 0.3333 

To get 0.3333 (on t0 in right of 0.3333’s) 

● 0 * 0.3333 + 0 * 0.0333 + 1 * 0.3333 = 0.3333 

 

Copy these values down to t1 & repeat process 



 

To get 0.28327 

● 0.3333 * 0.4833 + 0.3333 * 0.0333 + 0.3333 * 0.3333 

● 0.16108389 + 0.01109889  + 0.11108889 = 0.28327  (round to 5 decimal places) 

To get 0.58324 

● 0.3333 * 0.4833 + 0.3333 * 0.9333 + 0.3333 * 0.3333 

● 0.16108389 + 0.31106889 + 0.11108889 = 0.58324 

To get 0.13329 

● 0.3333 * 0.0333 + 0.3333 * 0.0333 + 0.3333 * 0.3333 

● 0.01109889 + 0.01109889 + 0.11108889 = 0.13328667 = 0.13329 

 

 

 

Decode VB code of documents IDs: 000000101001011010010001 (Autumn 2012) 

● 00000010    |     10010110    |     10010001    (break it up into 8-bit segments) 

● if 8-bit block begins with 1, remove the 1, then remove all zeroes to next one 

● else if 8-bit block does not begin with 1, remove all zeroes to the next 1 

● Note: if block after first block begins with one, then it is part of the first block 

○ in this case put their results together  

○ i.e. 10 ...... 10110 => 100010110 

 

● For each digit in 100010110 (from the right hand side) 

○ if its a one  

■ get its power for its position 

■ i.e. for 100011111 its power is 1 

■ i.e. for 100011110 its power is 2 

■ i.e. for 100011100 its power is 4 

■ i.e. for 100011000 its power is 8 

○ add up the powers for all of the digit 1’s 

○ i.e. for 100010110  

■ 2 + 4 + 16 + 256 = 278 

 

● For each digit in 10001 

● 1 + 16 = 17  

 

● Answer: 278 = 100010110  and 17 = 10001 thus doc 278 and doc 17 

 

 

 

Decode Gamma code of documents IDs: 11110100011111000101 (Autumn 2012) 

● Break up into blocks, where they are separated by the groups of consecutive 1’s 

○ i.e. 111101000        &         11111000101 

● Get rid of the 1’s and the first zero  

○ the amount of 1’s removed should be equal to the number of digits remaining before the 

next group of consecutive 1’s 

 

○ i.e. take the ones and zero from 111101000  



■ we get 1000 

■ then add back on the 1 to the front (that we chopped off when encoding) 

■ i.e. 11000 

■ then use same rules as VB decoding with regards to powers 

■ we get 8 + 16 = 24 

 

○ i.e. next take the ones and zero from 11111000101 

■ we get 00101 

■ then 100101 

■ then 1 + 4 + 32 = 37 

 

● Answer: 24 = 11000 gamma code: 111101000 and 37 = 100101 gamma code: 11111000101 

 

 


