• cosine similarity

General / Subtle Notes From Ang

- If you understand all tutorials and information from slides you will at least get a first class.
- Search: Why are skip pointers not useful for queries of the form x OR y
 - Found lots of documents with similar questions to Assignment 2 and other questions relevant to information retrieval!
- Need to know reason term has high weight
 - One reason is tf
 - The other is idf
- Remember cosine similarity between query and document
 - Easy if you understand inner product(dot product)

Rich's List

- The term vocabulary
- Dictionaries and tolerant retrieval
- Index compression basic idea of why, how lossy vs lossless know
- Postings compression
- Link analysis: Random walks, Markov chains, calculate pagerank (definitely on the exam) issues of this approach."

What to Revise (In Ang's Notes)

Lecture 1

• Need to know pritty much all of it

Lecture 2

• Need to know pritty much all of it

Lecture 3

- Tolerant retrieval
- Know the exercises on wild cards, permuterm etc.
- Jaccard, contexts, soundex on index (rules will be provided)
- Levenshtein

Lecture 4

Not covered

Lecture 5

- Heaps Law + Zipf's Law (very important)
- Blocking, storing gaps
- Know bytecodes, (static variables)?, gamma
- Entropy / entropy document

Lecture 6

- Term frequency & weighting
- Vector space, similarity, tf-idf (very important) (need to know formulas)

• Scoring Example (ranked retrieval I think!)

Lecture 7

- Retrieval of lists (know all formulas)
- Champion list, clustering, idea of what they are
- Basic knowledge of fields of zones
- Aggregate scores basic ideas

Lecture 8

- Difference between query and information needs
- Precision & recall
- Combined measure F, know definition and what happens when $alpha(a) = \frac{1}{2}$
- Kappa model / statistic
- Judges for comparing search

Lecture 2

- biword indexe
- positional index

Lecture 5

• front coding

Quick Notes

- Clustering: Given a set of docs, group them into clusters based on their contents.
- Classification: Given a set of topics, plus a new doc D, decide which topic(s) D belongs to.
- Ranking: Can we learn how to best order a set of documents, e.g., a set of search results
- Tokenization has language issues e.g. tokenizing from English to French / Arabic
- Stop words / list: get rid of common words that bear no meaning, care.. need them for
 - Phrase queries: "King of Denmark"
 - Poems: "To be or not to be"
- Case folding: reduce all letters to lowercase.
- Lemmatization: reduce inflectional/variant forms to base form e.g.
 - \circ am, are, is = be
 - \circ car, cars, car's, cars' = car
 - the boy's cars are different colors = the boy car be different color
- Skip Pointers [Lecture 2]
- Term document incidence matrix is a chart that shows if a term appears in a document by a 1 or 0.
- Inverted index shows the docID's in which a term occurs.
- Cosine similarity finds out how close a query and a document are together.
- How to judge whether a retrieval system is good or not;
 - How fast does index

- How fast does it search
- What is the cost per searching for a query
- Why would you not use the boolean retrieval model over the vector retrieval model?
 - Requires knowledge of how to construct boolean queries
 - All or nothing
- Why is accuracy not a useful measure for web information retrieval?
 - In a nutshell: 'all or nothing rule'
 - In an IR system, only a small fraction of the documents are relevant. Even if we have a good IR system that only returns the relevant documents, when compared with a poor system (for example that always returns nothing) there is little difference in accuracy, thus this measurement can't help evaluate an IR system.
 - Simple trick to maximize accuracy in IR: always say no and return nothing. You then get 99.99% accuracy on most queries.
- Soundex Class of heuristics to expand a query into phonetic equivalents.
- Heaps Law How many distinct terms are there in the term vocabulary.
- Heaps Law is the simplest possible relationship between collection size and vocabulary size in log-log space.
- Heaps law: M = kT^b
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \le k \le 100$ and $b \approx 0.5$. Thus M $\approx k \sqrt{-1}$
- Notice $\log M = \log k + \log T (y = c + bx)$
- Example One
 - Angs Sample (.png)
 - 0
 - Looking at a collection of web pages, you find that there are 8,000 different terms in the first 30,000 tokens and 25,000 different terms in the first 7,000,000 tokens. Assume a search engine indexes a total of 60,000,000,000 (6 × 10 ^ 10) pages, containing 400 tokens on average. What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?
 - 0
 - Equation 1
 - $\log(M1) = \log k + \log(T1)$
 - log(8,000) = logk + blog(30,000)
 - Equation 2
 - $\log(M2) = \log k + \log(T2)$
 - log(25,000) = logk + blog(7,000,000)
 - 0
 - To get b (take equation 1 from equation 2) (drop the logk)
 - $\blacksquare \quad \log(25,000) \log(8,000) = b * \log(7,000,000) \log(30,000)$
 - thus b = (log(25,000) log(8,000)) / (log(7,000,000) log(30,000))
 - b = 0.20897587542 ≈ b = 0.209
 - 0
 - To get k (sub b into either equation)

- $\log(8,000) = \log k + 0.209 * \log(30,000)$
- $\log k = \log(8,000) (0.209 * \log(30,000))$
- logk = 2.96747965343 (ang got 2.9675)
- k = 10 ^ 2.96747965343
- k = 927.854019418 (ang got 927.897: he only uses 10 ^ 2.9675)
- 0
- \circ log(M) = logk + 0.209 * log(60,000,000,000 * 400)
- \circ log(M) = 2.96747965343 + 2.25263361133
- \circ log(M) = 5.76394380295 \approx 5.763
- thus M = 10 ^ 5.76394380295 = 580689.272345 \approx 5.8 x 10 ^ 5
- Example Two
 - Angs Slides
 - 0
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens. Assume a search engine indexes a total of 20,000,000,000 (2 × 10 ^ 10) pages, containing 200 tokens on average. What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?
 - 0
 - Equation 1
 - $\log(M1) = \log k + \log(T1)$
 - log(3,000) = logk + blog(10,000)
 - Equation 2
 - $\log(M2) = \log k + b \log(T2)$
 - $\log(30,000) = \log k + \log(1,000,000)$
 - 0
 - To get b (take equation 1 from equation 2)
 - $\log(30,000) \log(3,000) = b * \log(1,000,000) \log(10,000)$
 - thus b = (log(30,000) log(3,000)) / (log(1,000,000) log(10,000)))
 - b = 0.5
 - 0
 - To get k (sub b into either equation)
 - $\log(3,000) = \log k + 0.5 * \log(10,000)$
 - logk = log(3,000) (0.5 * log(10,000))
 - logk = 1.47712125472
 - k = 10 ^ 1.47712125472
 - k = 30
 - 0
 - $\circ \quad \log(M) = \log k + 0.5 * \log(20,000,000,000 * 200)$
 - log(M) = 1.47712125472 + 6.30102999566
 - \circ log(M) = 7.77815125038 \approx 7.778
 - thus M = 10 ^ 7.77815125038 = 59999999999995 \approx 5.9 x 10 ^ 7
 - \circ //thus M = 10 ^ 7.77815125038 = 61376200.5165 \approx 6 x 10 ^ 7
- Zipfs Law How the terms are distributed across documents.

- Blocking Store pointers to every kth term string. By increasing the block size, we get better compression. However, there is a tradeoff between compression and the speed of term lookup.
- Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 4, 8 and 16.
 - For k = 8.
 - For every block of 8, need to store extra 8 bytes for length
 - For every block of 8, can save 7 * 3 bytes for term pointer. (each block usually 4 bytes, but now only storing pointer to first letter so 1 byte)
 - Saving (+8 21)/8 * 400K(terms) = 0.65 MB
 - \circ ie.
- 8 extra for length & 7 x 3 less = 21 thus -8 +21 = 13 bytes saved
- 7(one less than block as with 8 lengths only need 7 pointers to first letter) + 8(lengths) = 15 & 7 x4(original bytes needed) = 28 thus 28 - 15 = 13
- Entropy = measure of randomness & measure of compressibility
- H(p1,...,pn) = p1log(1/p1) + p2log(1/p2) + ... + pnlog(1/pn)
- Entropy enables one to compute the compressibility of data without actually needing to compress the data first!
- - plog(p) = **plog(1/p)**
 - p is the probability of an event
 - 1/p is the number of times the event occurs
 - log(k) measures how many bits are needed to represent the outcomes
- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE and LINE.
- The document frequency is the number of documents in the collection that the term occurs in.
- The tf-idf weighting scheme assigns to term t a weight in document d given by
- Champion List The idea of champion lists (sometimes also called fancy lists or top docs) is to precompute, for each term t in the dictionary, the set of the r documents with the highest weights for t; the value of r is chosen in advance. For tf-idf weighting, these would be the r documents with the highest tf values for term t. We call this set of r documents the champion list for term t.
- At query time, only compute scores for docs in the champion list of some query term. Pick the K top-scoring docs from amongst these
- Clustering is the grouping of a set of documents into clusters. Documents within a cluster should be as similar as possible; and documents in one cluster should be as dissimilar as possible from documents in other clusters. Clustering puts together documents that share many terms.
- A zone is a region of the doc that can contain an arbitrary amount of text, e.g., Title, Abstract, References

- Build inverted indexes on zones as well to permit querying e.g. find docs with merchant in the title zone and matching the query gentle rain
- Aggregate scores We've seen that score functions can combine cosine, static quality, proximity, etc. How do we know the best combination? Some applications are expert-tuned. Increasingly common: machine-learned
- Relevance: query vs. information need
- Relevance to what?
- First take: relevance to the query, "Relevance to the query" is very problematic.
- Information need i : "I am looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine."
- This is an information need, not a query.
- Query q: [red wine white wine heart attack]
- Consider document d': At heart of his speech was an attack on the wine industry lobby for downplaying the role of red and white wine in drunk driving.
- d' is an excellent match for query q . . .
- d' is not relevant to the information need i .
- User happiness can only be measured by relevance to an information need, not by relevance to queries.
- The Combined Measure F allows us to measure the tradeoff between precision and recall.

$$\circ$$
 F = $\frac{2PR}{P+R}$

• When alpha(a) = 1/2

- we have the same weighting for precision and recall
- if alpha(a) = 0.6 then we have more weighting for precision i.e. we want to focus more on precision than recall
- Kappa is a measure of how much judges agree or disagree.

$$\circ \quad \frac{P(A) - P(E)}{1 - P(E)}$$

- Transition Probability Matrix
 - With teleporting, we cannot get stuck in a dead end.
 - More generally, we require that the Markov chain be ergodic (ergodic is used to describe a dynamical system which, broadly speaking, has the same behavior averaged over time as averaged over the space of all the system's states).

Autumn 2012

0

0

1

Transition matrix without teleporting: $\begin{array}{c} d_0\\ d_1\\ d_2\end{array}$						d_0 0.5 0 $\frac{1}{3}$	d_1 0.5 1 $\frac{1}{3}$	$d_2 \\ 0 \\ 0 \\ \frac{1}{3}$		
Transition matrix with teleporting $\alpha = 0.1$:						d_0 d_1 d_2	0.483 0.033 0.333	40 33 33 33	d ₁ 0.4833 0.9333 0.3333	d ₂ 0.0333 0.0333 0.3333
t_0 t_1 t_2	$P_t(d_0)$ 0 0.3333 0.28327	$P_t(d_1)$ 0 0.3333 0.58324	$P_t(d_2)$ 1 0.3333 0.13329	0.3 0.28 0.200	3333 3327)752	0 0.3 0.75	. 3333 58324 25669	0.	0.3333 0.13329 073279	$\mathrm{d}ec{P} \ \mathrm{d}ec{P}^2 \ \mathrm{d}ec{P}^3 \ \mathrm{d}ec{P}^3$

a = 0.1

0.1 / 3 = 0.0333 1 - (0.1 / 3 * 1) = 0.9666 / 2 = 0.4833 1 - (0.1 / 3 * 2) = 0.9333

To get 0.3333 (on t0 on left of 0.3333's) • 0 * 0.4833 + 0 * 0.0333 + 1 * 0.3333 = 0.3333 To get 0.3333 (on t0 in middle of 0.3333's) • 0 * 0.4833 + 0 * 0.9333 + 1 * 0.3333 = 0.3333 To get 0.3333 (on t0 in right of 0.3333's)

• 0 * 0.3333 + 0 * 0.0333 + 1 * 0.3333 = 0.3333

Copy these values down to t1 & repeat process

To get 0.28327

- 0.3333 * 0.4833 + 0.3333 * 0.0333 + 0.3333 * 0.3333
- 0.16108389 + 0.01109889 + 0.11108889 = 0.28327 (round to 5 decimal places) To get 0.58324
 - 0.3333 * 0.4833 + 0.3333 * 0.9333 + 0.3333 * 0.3333
 - 0.16108389 + 0.31106889 + 0.11108889 = 0.58324

To get 0.13329

- 0.3333 * 0.0333 + 0.3333 * 0.0333 + 0.3333 * 0.3333
- 0.01109889 + 0.01109889 + 0.11108889 = 0.13328667 = 0.13329

Decode VB code of documents IDs: 000000101001011010010001 (Autumn 2012)

- 00000010 | 10010110 | 10010001 (break it up into 8-bit segments)
- if 8-bit block begins with 1, remove the 1, then remove all zeroes to next one
- else if 8-bit block does not begin with 1, remove all zeroes to the next 1
- Note: if block after first block begins with one, then it is part of the first block
 - in this case put their results together
 - i.e. 10 10110 => 100010110
- For each digit in 100010110 (from the right hand side)
 - if its a one
 - get its power for its position
 - i.e. for 100011111 its power is 1
 - i.e. for 100011110 its power is 2
 - i.e. for 100011100 its power is 4
 - i.e. for 100011000 its power is 8
 - add up the powers for all of the digit 1's
 - i.e. for 100010110
 - 2 + 4 + 16 + 256 = 278
- For each digit in 10001
- 1 + 16 = 17
- Answer: 278 = 100010110 and 17 = 10001 thus doc 278 and doc 17

Decode Gamma code of documents IDs: 11110100011111000101 (Autumn 2012)

- Break up into blocks, where they are separated by the groups of consecutive 1's
 - i.e. 111101000 & 11111000101
- Get rid of the 1's and the first zero
 - the amount of 1's removed should be equal to the number of digits remaining before the next group of consecutive 1's
 - i.e. take the ones and zero from 111101000

- we get 1000
- then add back on the 1 to the front (that we chopped off when encoding)
- i.e. 11000
- then use same rules as VB decoding with regards to powers
- we get 8 + 16 = 24
- i.e. next take the ones and zero from 11111000101
 - we get 00101
 - then 100101
 - then 1 + 4 + 32 = 37
- Answer: 24 = 11000 gamma code: 111101000 and 37 = 100101 gamma code: 11111000101