
● cosine similarity

General / Subtle Notes From Ang

● If you understand all tutorials and information from slides you will at least get a first class.

● Search: Why are skip pointers not useful for queries of the form x OR y

○ Found lots of documents with similar questions to Assignment 2 and other questions

relevant to information retrieval!

● Need to know reason term has high weight

○ One reason is tf

○ The other is idf

● Remember cosine similarity between query and document

○ Easy if you understand inner product(dot product)

Rich’s List

● The term vocabulary

● Dictionaries and tolerant retrieval

● Index compression - basic idea of why, how lossy vs lossless know

● Postings compression

● Link analysis: Random walks, Markov chains, calculate pagerank (definitely on the exam) issues

of this approach."

What to Revise (In Ang’s Notes)

Lecture 1

● Need to know pritty much all of it

Lecture 2

● Need to know pritty much all of it

Lecture 3

● Tolerant retrieval

● Know the exercises on wild cards, permuterm etc.

● Jaccard, contexts, soundex on index (rules will be provided)

● Levenshtein

Lecture 4

● Not covered

Lecture 5

● Heaps Law + Zipf's Law (very important)

● Blocking, storing gaps

● Know bytecodes, (static variables)?, gamma

● Entropy / entropy document

Lecture 6

● Term frequency & weighting

● Vector space, similarity, tf-idf (very important) (need to know formulas)

● Scoring Example (ranked retrieval I think!)

Lecture 7

● Retrieval of lists (know all formulas)

● Champion list, clustering, idea of what they are

● Basic knowledge of fields of zones

● Aggregate scores basic ideas

Lecture 8

● Difference between query and information needs

● Precision & recall

● Combined measure F, know definition and what happens when alpha(a) = ½

● Kappa model / statistic

● Judges for comparing search

Lecture 2

● biword indexe

● positional index

Lecture 5

● front coding

Quick Notes

● Clustering: Given a set of docs, group them into clusters based on their contents.

● Classification: Given a set of topics, plus a new doc D, decide which topic(s) D belongs to.

● Ranking: Can we learn how to best order a set of documents, e.g., a set of search results

● Tokenization has language issues e.g. tokenizing from English to French / Arabic

● Stop words / list: get rid of common words that bear no meaning, care.. need them for

○ Phrase queries: “King of Denmark”

○ Poems: “To be or not to be”

● Case folding: reduce all letters to lowercase.

● Lemmatization: reduce inflectional/variant forms to base form e.g.

○ am, are, is = be

○ car, cars, car's, cars' = car

○ the boy's cars are different colors = the boy car be different color

● Skip Pointers [Lecture 2]

● Term document incidence matrix is a chart that shows if a term appears in a document by a 1 or

0.

● Inverted index shows the docID’s in which a term occurs.

● Cosine similarity finds out how close a query and a document are together.

● How to judge whether a retrieval system is good or not;

○ How fast does index

○ How fast does it search

○ What is the cost per searching for a query

● Why would you not use the boolean retrieval model over the vector retrieval model?

○ Requires knowledge of how to construct boolean queries

○ All or nothing

● Why is accuracy not a useful measure for web information retrieval?

○ In a nutshell: ‘all or nothing rule’

○ In an IR system, only a small fraction of the documents are relevant. Even if we have a

good IR system that only returns the relevant documents, when compared with a poor

system (for example that always returns nothing) there is little difference in accuracy,

thus this measurement can’t help evaluate an IR system.

○ Simple trick to maximize accuracy in IR: always say no and return nothing. You then get

99.99% accuracy on most queries.

● Soundex - Class of heuristics to expand a query into phonetic equivalents.

● Heaps Law - How many distinct terms are there in the term vocabulary.

● Heaps Law is the simplest possible relationship between collection size and vocabulary size in

log-log space.

● Heaps law: M = kT^b

● M is the size of the vocabulary, T is the number of tokens in the collection.

● Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. Thus M ≈ k √ T

● Notice logM = logk + blogT (y = c + bx)

● Example One

○ Angs Sample (.png)

○

○ Looking at a collection of web pages, you find that there are 8,000 different terms in the

first 30,000 tokens and 25,000 different terms in the first 7,000,000 tokens. Assume a

search engine indexes a total of 60,000,000,000 (6 × 10 ^ 10) pages, containing 400

tokens on average. What is the size of the vocabulary of the indexed collection as

predicted by Heaps’ law?

○

○ Equation 1

■ log(M1) = logk + blog(T1)

■ log(8,000) = logk + blog(30,000)

○ Equation 2

■ log(M2) = logk + blog(T2)

■ log(25,000) = logk + blog(7,000,000)

○

○ To get b (take equation 1 from equation 2) (drop the logk)

■ log(25,000) - log(8,000) = b * log(7,000,000) - log(30,000)

■ thus b = (log(25,000) - log(8,000)) / (log(7,000,000) - log(30,000))

■ b = 0.20897587542 b = 0.209

○

○ To get k (sub b into either equation)

■ log(8,000) = logk + 0.209 * log(30,000)

■ logk = log(8,000) - (0.209 * log(30,000))

■ logk = 2.96747965343 (ang got 2.9675)

■ k = 10 ^ 2.96747965343

■ k = 927.854019418 (ang got 927.897: he only uses 10 ^ 2.9675)

○

○ log(M) = logk + 0.209 * log(60,000,000,000 * 400)

○ log(M) = 2.96747965343 + 2.25263361133

○ log(M) = 5.76394380295 5.763

○ thus M = 10 ^ 5.76394380295 = 580689.272345 5.8 x 10 ^ 5

● Example Two

○ Angs Slides

○

○ Looking at a collection of web pages, you find that there are 3000 different terms in the

first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens. Assume a

search engine indexes a total of 20,000,000,000 (2 × 10 ^ 10) pages, containing 200

tokens on average. What is the size of the vocabulary of the indexed collection as

predicted by Heaps’ law?

○

○ Equation 1

■ log(M1) = logk + blog(T1)

■ log(3,000) = logk + blog(10,000)

○ Equation 2

■ log(M2) = logk + blog(T2)

■ log(30,000) = logk + blog(1,000,000)

○

○ To get b (take equation 1 from equation 2)

■ log(30,000) - log(3,000) = b * log(1,000,000) - log(10,000)

■ thus b = (log(30,000) - log(3,000)) / (log(1,000,000) - log(10,000))

■ b = 0.5

○

○ To get k (sub b into either equation)

■ log(3,000) = logk + 0.5 * log(10,000)

■ logk = log(3,000) - (0.5 * log(10,000))

■ logk = 1.47712125472

■ k = 10 ^ 1.47712125472

■ k = 30

○

○ log(M) = logk + 0.5 * log(20,000,000,000 * 200)

○ log(M) = 1.47712125472 + 6.30102999566

○ log(M) = 7.77815125038 7.778

○ thus M = 10 ^ 7.77815125038 = 59999999.9995 5.9 x 10 ^ 7

○ //thus M = 10 ^ 7.77815125038 = 61376200.5165 6 x 10 ^ 7

● Zipfs Law - How the terms are distributed across documents.

● Blocking - Store pointers to every kth term string. By increasing the block size, we get better

compression. However, there is a tradeoff between compression and the speed of term lookup.

● Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k =

4, 8 and 16.

○ For k = 8.

○ For every block of 8, need to store extra 8 bytes for length

○ For every block of 8, can save 7 * 3 bytes for term pointer. (each block usually 4 bytes, but now

only storing pointer to first letter so 1 byte)
○ Saving (+8 – 21)/8 * 400K(terms) = 0.65 MB

○ ie.

■ 8 extra for length & 7 x 3 less = 21 thus -8 +21 = 13 bytes saved

■ 7(one less than block as with 8 lengths only need 7 pointers to first letter) + 8(lengths) = 15 & 7 x

4(original bytes needed) = 28 thus 28 - 15 = 13

● Entropy = measure of randomness & measure of compressibility

● H(p1,…,pn) = p1log(1/p1) + p2log(1/p2) + … + pnlog(1/pn)

● Entropy enables one to compute the compressibility of data without actually needing to compress

the data first!

● – plog(p) = plog(1/p)

○ p is the probability of an event

○ 1/p is the number of times the event occurs

○ log(k) measures how many bits are needed to represent the outcomes

● We want high weights for rare terms like ARACHNOCENTRIC.

● We want low (positive) weights for frequent words like GOOD, INCREASE and LINE.

● The document frequency is the number of documents in the collection that the term occurs in.

● The tf-idf weighting scheme assigns to term t a weight in document d given by

● Champion List - The idea of champion lists (sometimes also called fancy lists or top docs) is to

precompute, for each term t in the dictionary, the set of the r documents with the highest weights

for t; the value of r is chosen in advance. For tf-idf weighting, these would be the r documents

with the highest tf values for term t. We call this set of r documents the champion list for term t.

● At query time, only compute scores for docs in the champion list of some query term. Pick the K

top-scoring docs from amongst these

● Clustering is the grouping of a set of documents into clusters. Documents within a cluster should

be as similar as possible; and documents in one cluster should be as dissimilar as possible from

documents in other clusters. Clustering puts together documents that share many terms.

● A zone is a region of the doc that can contain an arbitrary amount of text, e.g., Title, Abstract,

References

● Build inverted indexes on zones as well to permit querying e.g. find docs with merchant in the title

zone and matching the query gentle rain

● Aggregate scores - We’ve seen that score functions can combine cosine, static quality, proximity,

etc. How do we know the best combination? Some applications are expert-tuned. Increasingly

common: machine-learned

● Relevance: query vs. information need

● Relevance to what?

● First take: relevance to the query, “Relevance to the query” is very problematic.

● Information need i : “I am looking for information on whether drinking red wine is more effective at

reducing your risk of heart attacks than white wine.”

● This is an information need, not a query.

● Query q: [red wine white wine heart attack]

● Consider document d′: At heart of his speech was an attack on the wine industry lobby for

downplaying the role of red and white wine in drunk driving.

● d′ is an excellent match for query q . . .

● d′ is not relevant to the information need i .

● User happiness can only be measured by relevance to an information need, not by relevance to

queries.

● The Combined Measure F allows us to measure the tradeoff between precision and recall.

○ F =
2PR

P R

○ When alpha(a) = 1/2

■ we have the same weighting for precision and recall

■ if alpha(a) = 0.6 then we have more weighting for precision i.e. we want to focus

more on precision than recall

● Kappa is a measure of how much judges agree or disagree.

○
P A - P

1 - P

● Transition Probability Matrix

○ With teleporting, we cannot get stuck in a dead end.

○ More generally, we require that the Markov chain be ergodic (ergodic is used to describe a

dynamical system which, broadly speaking, has the same behavior averaged over time as averaged over the

space of all the system's states).

Autumn 2012

http://en.wikipedia.org/wiki/Dynamical_system_(definition)

a = 0.1

0.1 / 3 = 0.0333

1 - (0.1 / 3 * 1) = 0.9666 / 2 = 0.4833

1 - (0.1 / 3 * 2) = 0.9333

To get 0.3333 (on t0 on left of 0.3333’s)

● 0 * 0.4833 + 0 * 0.0333 + 1 * 0.3333 = 0.3333

To get 0.3333 (on t0 in middle of 0.3333’s)

● 0 * 0.4833 + 0 * 0.9333 + 1 * 0.3333 = 0.3333

To get 0.3333 (on t0 in right of 0.3333’s)

● 0 * 0.3333 + 0 * 0.0333 + 1 * 0.3333 = 0.3333

Copy these values down to t1 & repeat process

To get 0.28327

● 0.3333 * 0.4833 + 0.3333 * 0.0333 + 0.3333 * 0.3333

● 0.16108389 + 0.01109889 + 0.11108889 = 0.28327 (round to 5 decimal places)

To get 0.58324

● 0.3333 * 0.4833 + 0.3333 * 0.9333 + 0.3333 * 0.3333

● 0.16108389 + 0.31106889 + 0.11108889 = 0.58324

To get 0.13329

● 0.3333 * 0.0333 + 0.3333 * 0.0333 + 0.3333 * 0.3333

● 0.01109889 + 0.01109889 + 0.11108889 = 0.13328667 = 0.13329

Decode VB code of documents IDs: 000000101001011010010001 (Autumn 2012)

● 00000010 | 10010110 | 10010001 (break it up into 8-bit segments)

● if 8-bit block begins with 1, remove the 1, then remove all zeroes to next one

● else if 8-bit block does not begin with 1, remove all zeroes to the next 1

● Note: if block after first block begins with one, then it is part of the first block

○ in this case put their results together

○ i.e. 10 10110 => 100010110

● For each digit in 100010110 (from the right hand side)

○ if its a one

■ get its power for its position

■ i.e. for 100011111 its power is 1

■ i.e. for 100011110 its power is 2

■ i.e. for 100011100 its power is 4

■ i.e. for 100011000 its power is 8

○ add up the powers for all of the digit 1’s

○ i.e. for 100010110

■ 2 + 4 + 16 + 256 = 278

● For each digit in 10001

● 1 + 16 = 17

● Answer: 278 = 100010110 and 17 = 10001 thus doc 278 and doc 17

Decode Gamma code of documents IDs: 11110100011111000101 (Autumn 2012)

● Break up into blocks, where they are separated by the groups of consecutive 1’s

○ i.e. 111101000 & 11111000101

● Get rid of the 1’s and the first zero

○ the amount of 1’s removed should be equal to the number of digits remaining before the

next group of consecutive 1’s

○ i.e. take the ones and zero from 111101000

■ we get 1000

■ then add back on the 1 to the front (that we chopped off when encoding)

■ i.e. 11000

■ then use same rules as VB decoding with regards to powers

■ we get 8 + 16 = 24

○ i.e. next take the ones and zero from 11111000101

■ we get 00101

■ then 100101

■ then 1 + 4 + 32 = 37

● Answer: 24 = 11000 gamma code: 111101000 and 37 = 100101 gamma code: 11111000101

